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Abstract The flow of two superposed viscous fluid layers in a two-dimensional channel confined between a plane
and a wavy or indented wall is studied by analytical and numerical methods at arbitrary Reynolds numbers. The
interface between the two fluids may exhibit constant or variable surface tension due to an insoluble surfactant.
The flow is computed from a specified initial condition using the immersed-interface method on a curvilinear grid
constructed by conformal mapping. The numerical simulations illustrate the effect of geometrical nonlinearity and
reveal that inertia may increase or decrease the amplitude of the interface profile at steady state depending on the
flow parameters. Increasing either the Reynolds number or the wall amplitude above a certain threshold value pro-
vokes flow instability and overturning of the interface. In the Appendix, a linear perturbation analysis is performed
for arbitrary Reynolds numbers on the assumption of small-amplitude sinusoidal undulations, and results for the
amplitude and phase shift of the interfacial and surfactant concentration wave are documented for a broad range
of flow conditions. It is found that inertia may have a mixed effect on the deformation and phase shift, while the
surfactant promotes the deformation of the interface under most conditions.

Keywords Channel flow · Immersed-interface method · Marangoni instability · Surfactants

1 Introduction

Flow over a wall with isolated or distributed surface roughness is an important topic of fundamental and applied
research. The effect of wall roughness has been addressed by a number of workers for homogeneous channel flow
in the context of tribology and with the intention of further explaining the process of laminar–turbulent transition
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128 H. Luo et al.

(see, e.g., [1,2]). When two or more fluid layers are present, attention is focused upon the shape and various modes
of instability of the interfaces. From a practical standpoint, the flow of a liquid film or multi-layered system arises
in a broad range of important industrial applications including the manufacture of electronic components, the fab-
rication of active glass screens, and photographic coating technology. The underlying surface may be corrugated
deliberately in order to produce patterning effects, or else the surface roughness may be a natural but undesirable
feature creating unwanted distortion.

A number of authors have studied steady two-dimensional film flow down a corrugated wall. Wang [3] con-
ducted an asymptotic analysis based on small-amplitude wall roughness. Kang and Chen [4] looked at two-layer
flow down a wavy wall for small Reynolds numbers. Experiments performed by Vlachogiannis and Bontozoglou
[6] revealed that steady free-surface profiles can be realised, even for quite large Reynolds numbers on the order of
a hundred. The profiles have the same wavelength as the wall indentations, but the amplitude and phase depends
on the Reynolds number. Wierschem et al. [7] conducted further experiments and paid particular attention to the
vortices generated in the troughs at small Reynolds numbers.

In the current work, we consider two-layer steady flow in a two-dimensional channel confined between a planar
upper wall and an uneven lower wall. In a companion paper, Luo and Pozrikidis [8] examined the flow in the limit
of vanishing Reynolds number and accounted for the effect of an insoluble surfactant. The main objective was to
describe the significance of the wall corrugations on the shape of the interface and assess the effect of the surfactant
at steady state. Consideration of the surfactant was partly motivated by the recent discovery that the Marangoni
traction due to variations in the surfactant concentration promotes the deformation of the free surface of a liquid
film down an inclined corrugated wall in Stokes flow [5].

Luo and Pozrikidis [8] performed a perturbation analysis for a channel wall with small-amplitude sinusoidal
corrugations, and confirmed that the surfactant amplifies the deformation of the interface and causes a negative drift
in the phase shift under most conditions. The effect was shown to be most significant at moderate capillary numbers
and for wall corrugations whose wave length is large compared to the thickness of the adjacent layer lining the wavy
wall. Parametric investigations revealed that the precise effect of the surfactant depends on the ratio of the fluid
viscosities, proximity of the interface to the planar wall, capillary number, and wave length of the corrugations.
When the interface is near the plane wall, introducing surfactant reduces the interfacial amplitude and causes a
positive phase shift with respect to the wavy wall in shear-driven flow. As the interface further approaches the plane
wall, the interfacial wave tends to become in phase with the wavy wall, reflecting its unshifted topography. Luo and
Pozrikidis [8] further implemented a boundary-integral method to compute Stokes flow over a wall with a periodic
profile, and presented results for sinusoidal walls and planar walls containing a periodic sequence of square and
circular depressions or projections. The boundary-integral computations revealed that the linear perturbation theory
overestimates the deformation of the interface and illustrated the nature of shear-driven film flow over a planar wall
with indented topography.

In this paper, the previous analysis is extended into the regime of inertial flow with the goal of describing the
effect of the Reynolds number. A numerical method is developed for computing flow in a periodic channel with
arbitrary geometry using the immersed-interface formulation in curvilinear coordinates by conformal mapping. In
addition, a linearised analysis is performed in the context of only minor wall roughness and the results are shown
to be consistent with the nonlinear calculations. Parametric investigations for a variety of wall geometries illustrate
the effect of inertial and geometrical nonlinearity for significantly uneven profiles.

2 Problem statement

We consider two-dimensional flow of two superposed liquid layers in a horizontal channel confined by a planar
upper wall and a periodic lower wall with wave length L, as illustrated in Fig. 1a. The lower and upper layers are
labeled as 1 and 2, respectively. The fluid motion is driven either by the translation of the upper wall parallel to
itself with velocity U (shear-driven flow), or by an imposed streamwise pressure gradient (pressure-driven flow).
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(a) (b)

Fig. 1 (a) Schematic illustration of two-layer flow in a channel confined by a planar upper wall and a corrugated lower wall. (b)
Orthogonal curvilinear grid produced by conformal mapping for solving the Navier–Stokes equation, and distribution of the interfacial
marker points

The flow in each layer is governed by the Navier–Stokes equation,

ρj

(
∂u
∂t

+ u · ∇u
)

= −∇p + µj ∇2u, ∇ · u = 0, (2.1)

where u = (ux, uy) is the velocity, p is the pressure, µj are the fluid viscosities, ρj are the fluid densities, and
j = 1, 2 correspond to the lower and upper fluid, respectively. The upper wall is located at y = d, and the lower
wall is described by the periodic function y = yw(x). In the remainder of this paper, we consider neutrally buoyant
fluids, and set ρ1 = ρ2 = ρ.

The velocity is required to satisfy the no-slip and no-penetration conditions at the lower and the upper walls and
to vary continuously across the interface. The hydrodynamic traction undergoes a discontinuity given by

�f ≡ (σ (1) − σ (2)) · n = −∂(γ t)
∂l

= −γ κn − ∂γ

∂l
t, (2.2)

where σ (j) is the Newtonian stress tensor in the j th fluid on either side of the interface, γ is the position-dependent
surface tension, n is the unit normal vector pointing into the lower fluid, t is the unit tangent vector pointing in the
direction of increasing arc length l, and κ = n · dt/dl is the curvature of the interface in the xy plane, reckoned to
be positive when the interface is downward parabolic, as illustrated in Fig. 1a.

The interface is populated with an insoluble surfactant that is convected and diffuses along the interface according
to the transport equation

d�

dt
+ ∂(ut�)

∂l
= −�κun +Ds

∂2�

∂l2
, (2.3)

where ut = u · t is the tangential velocity, un = −u · n is the normal velocity, and Ds is the surfactant diffusivity
(e.g., [9,10]). The derivative d/dt on the left-hand side of (2.3) expresses the rate of change of a variable follow-
ing an interfacial marker point moving with the local fluid velocity normal to the interface. When the surfactant
concentration is well below the saturation level, a linear relationship may be assumed between the surface tension
and the surfactant concentration according to Gibbs’ law, γc − γ = �E, where E is the surface elasticity and
γc is the surface tension of a clean interface devoid of surfactants (e.g., [11,12]). In terms of the dimensionless
physiochemical parameter β = �0E/γc, the linear equation of state reads

γ = γ0

1 − β

(
1 − β

�

�0

)
, (2.4)

where �0 is a reference concentration corresponding to the surface tension γ0 = γc (1 −β). The significance of the
surfactant is expressed by the dimensionless Marangoni number,

Ma ≡ E�0

γ0
= β

1 − β
. (2.5)
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Given an initial condition, the dynamics of the flow depends on the ratio of the fluid volumes contained within
each period, r , viscosity ratio, λ ≡ µ2/µ1, Marangoni number, Ma, and reduced lower-wall profile ŷw ≡ yw/d. In
the case of shear-driven flow, the dynamics also depends on the capillary and Reynolds numbers

CaS = µ1U

γ0
, ReS = ρ Ud

µ1
. (2.6)

In the case of pressure-driven flow, the capillary and Reynolds numbers are defined as

CaP = χd2

γ0
, ReP = ρ χd3

µ2
1

, (2.7)

where χ is the negative of the mean streamwise pressure gradient.

3 Numerical simulations for arbitrary wall amplitude

To study flow in a channel with an arbitrary profile, we solve the Navier–Stokes equation (2.1) subject to the
no-slip and no-penetration conditions over each wall, and the stress balance expressed by (2.2) along the inter-
face. The numerical procedure is based on Peskin’s immersed-interface formulation (e.g. [13]) combined with a
finite-difference method implemented in orthogonal curvilinear coordinates constructed by conformal mapping. A
similar method was implemented by Pozrikidis [14] on a Cartesian grid for two-layer flow in a channel confined
by two plane parallel walls, and by Blyth et al. [15] for computing axisymmetric waves in core-annular flow.
The novelty of the present method lies in the implementation of the immersed-interface formulation in curvilinear
coordinates.

3.1 Conformal mapping

Consider a periodic flow cell, as illustrated in Fig. 1b. To implement the finite-difference method, we introduce a
conformal mapping that maps the depicted flow cell into the rectangular region 0 ≤ ξ ≤ 2π , 0 ≤ η ≤ ηT in the ξη
parameter space,

(x, y) = F(ξ, η), (3.1)

expressed by

x

L/2π
= ξ +

∞∑
n=1

bn

n
sin(nξ)

{
cosh[n(ηT − η)]

sinh(n ηT )

}
,

(3.2)

y

L/2π
= η + b0 −

∞∑
n=1

bn

n
cos(nξ)

{
sinh[n(ηT − η)]

sinh(n ηT )

}
,

where bn are a priori unknown constant coefficients, and ηT = 2πd/L− b0 [16]. In the practical implementation,
the infinite series on the right-hand side of (3.2) are truncated after Nb terms. To compute the unknown constants,
bn, we distributeNp evenly spaced points along the line η = 0, for 0 ≤ ξ ≤ 2π , and require that their images lie on
the prescribed lower wall in the xy-plane. The coefficients, bn, are then computed by minimizing the approximation
error in a least-squares sense using a gradient-based optimization method. For flow over a sinusoidal wall discussed
later in this section, we have used Nb ≤ 30 and Np = 200. Once the mapping coefficients are available, the map-
ping of a point from the parameter space to the physical space arises explicitly from (3.2). To compute the inverse
mapping of a point from the physical space to a point in the parameter space, we solve the nonlinear equation (3.2)
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using Newton’s method. Typically, only a few iterations are required to achieve convergence to within a specified
tolerance. The Jacobian matrix of the transformation is given by

J ≡
[

cos θ − sin θ
sin θ cos θ

]
= 1

J

⎡
⎢⎣
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

⎤
⎥⎦ , J ≡

√(∂x
∂ξ

)2 +
(∂x
∂η

)2
, (3.3)

where θ is the local clockwise rotation angle at the intersection of the curvilinear and Cartesian coordinates.

3.2 Governing equations and numerical method

In the numerical implementation, the discontinuous viscosity field is replaced by a smooth distribution expressed in
terms of a mollifying function c(ξ, η) which takes the value of zero in the bulk of the lower fluid, the value of unity
in the bulk of the upper fluid, and undergoes a rapid transition across the interface,µ(ξ, η) = µ1 +(µ2 −µ1)c(ξ, η)

(e.g., [14,15]). The mollifying function in the ξη-plane is computed on the basis of the following integral represen-
tation for the gradient

∇̂c(ξ, η) = −J−1(x) ·
∫
I

D2(x − x′) n(x′) dl(x′), (3.4)

where ∇̂ = (1/J ) [∂/∂ξ, ∂/∂η], D2 is Dirac’s delta function in the xy-plane with dimension of inverse squared
length, and l is the arc length along the interface I . The integral on the right-hand side of (3.4) is evaluated at the
nodes of a finite-difference grid in the xy-space and then mapped onto the corresponding grid nodes in the ξη-plane.
The delta function inside the integral is approximated with a smooth but narrowly distributed function, as will be
discussed later in this section. Taking the divergence of (3.4) written for the smoothed delta function, we derive a
Poisson equation for c(ξ, η), which is solved subject to the periodic boundary condition in the ξ direction, and the
Dirichlet boundary conditions c = 0 at η = 0 and c = 1 at η = ηT .

Next, we express the velocity in terms of its components in the orthogonal curvilinear coordinates, û = (uξ , uη),
and introduce a generalized Navier–Stokes equation incorporating the jump in viscosity and traction at the interface

ρ
(∂û
∂t

+ û · ∇̂û
)

= −∇̂p + 2 ∇̂ · (µÊ)+ B̂, (3.5)

where Ê = (1/2) (∇̂û +∇̂ûT ) is the rate-of-deformation tensor, B̂ is the body force vector accounting for the jump
in the interfacial traction,

B̂ = B̂(F−1(x)) = −J−1(x) ·
∫
I

D2(x − x′) �f(x′) dl(x′), (3.6)

and �f is the jump in the interfacial traction defined in (2.2). The orthogonal curvilinear components of the diver-
gence of the deviatoric part of the stress tensor can be expressed in the form

2∇̂ · (µ Ê) = µ∇̂2û + ∇̂µ× ω̂ + 2 ∇̂µ · ∇̂û, (3.7)

where ω̂ ≡ ∇̂ × û is the vorticity. The second and third terms on the right-hand side of (3.7) are non-zero only
along the interface. Because ∇̂µ is normal to the interface, the second term makes a contribution that is tangential
to the interface.

One period of the interface is traced with NI interfacial nodes in the physical space, xk , k = 1, 2, . . . , NI , and
the interfacial profile, (x(s), y(s)), is reconstructed from the nodal positions using periodic cubic-spline interpo-
lation in physical space, as shown in Fig. 1b. At the nodes, the interpolation parameter, s, is identified with the
current length of a polygonal line connecting adjacent nodes, measured from the first node. Once the shape of the
interface has been constructed, the normal and tangential vectors, n and t, are computed using standard formulae
from differential geometry, and the curvature of the interface in the xy space is calculated using the formula

κ = x′′y′ − y′′x′

(x′2 + y′2)3/2
, (3.8)
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where a prime denotes a derivative with respect to the interpolation parameter, s. At each time step, the nodes are
adaptively redistributed to ensure adequate spatial resolution and prevent clustering [14]. The surfactant concen-
tration at the new nodes is obtained by polynomial interpolation.

In the immersed-interface method inspired by Peskin’s immersed-boundary method, the singular delta function
D2(x) associated with each node is replaced by a smooth function that is supported by a rectangular region centered
at the node. For the kth node, we use the approximation

D2(x − xk) � H2(x − xk) ≡ 1

16 δ1δ2
(1 + cos x̂)(1 + cos ŷ) (3.9)

for |x − xk| < 2δ1 and |y − yk| < 2δ2, where x̂ ≡ π(x − xk)/(2 δ1), ŷ ≡ π(y − yk)/(2 δ2), δ1 ≡ (�x)q ,
δ2 ≡ (�y)q , �x ≡ L/Nξ and �y ≡ d/Nη are averaged spatial discretization intervals in the physical space,
Nξ and Nη are the spatial resolutions of the finite-difference grid in the ξ and η directions, and q is a numerical
parameter controlling the spreading length of the delta function. Applying the trapezoidal rule to evaluate the line
integral on the right-hand side of (3.6), we find

∫
I

D2(x − x′) �f(x′) dl(x′) �
NI∑
k=1

H2(x − xk) �fk
lk+1 − lk−1

2
, (3.10)

where lk is the arc length measured from the reference point to the kth node. The jump in the interfacial traction at
the kth node, �fk , is evaluated using the finite-difference approximation

�fk = −
(

xk+1 − xk
|xk+1 − xk|

γk+1 + γk

2
− xk − xk−1

|xk − xk−1|
γk + γk−1

2

)
2

lk+1 − lk−1
(3.11)

based on the middle expression in (2.2).
To compute the evolution of the flow from a specified initial condition, we use a variation of Chorin’s projection

method. The algorithm involves a series of elementary sub-steps based on the constituent evolution equations

ρ
∂û
∂t

= −χ ê + ∇̂µ× ω̂ + B̂ − ρ v̂ ·
⎡
⎢⎣

uη

J 2
∂J
∂η

− uη

J 2
∂J
∂ξ

− uξ

J 2
∂J
∂η

uξ

J 2
∂J
∂ξ

⎤
⎥⎦ ,

(3.12)

ρ
(∂û
∂t

+ v̂ · ∇̂(1)û
)

= µ ∇̂2û, ρ
∂û
∂t

= −∇̂φ,

where χ is a specified constant pressure gradient, ê = J−1 ·ex , ex is the unit vector along the x-axis in the xy-plane,
φ is a projection function regarded as an approximation of the non-periodic part of the pressure (e.g., [17,18]), and

v̂ ≡ û − 2

ρ
∇̂µ, ∇̂(1)û ≡

⎡
⎢⎣

1
J
∂uξ
∂ξ

1
J
∂uξ
∂η

1
J
∂uη
∂ξ

1
J
∂uη
∂η

⎤
⎥⎦ . (3.13)

To expedite the simulations, the second step in (3.12) is further decomposed into two one-dimensional convection–
diffusion steps,

ρ
(∂û
∂t

+ vξ
1

J
∂û
∂ξ

)
= µL(1)(û),

(3.14)

ρ
(∂û
∂t

+ vη
1

J
∂û
∂η

)
= µL(2)(û)+ µ L(3)(û),
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where L(i)(û), i = 1, 2, 3, are individual splittings of ∇̂2û, given by

L(1)(û) ≡ 1

J 2

[
∂2û
∂ξ2 − û

J
(
∂2J
∂ξ2 + ∂2J

∂η2

)]
,

L(2)(û) ≡ 1

J 2

∂2û
∂η2 , L(3)(û) ≡ 2

J 3

⎡
⎢⎣
∂uη
∂ξ

∂J
∂η

− ∂uη
∂η

∂J
∂ξ

∂uξ
∂η

∂J
∂ξ

− ∂uξ
∂ξ

∂J
∂η

⎤
⎥⎦ . (3.15)

The first equation in (3.12) is integrated forwards in time using the explicit Euler method, while Eqs. (3.14) are
integrated using the implicit Crank–Nicolson method. Implicit treatment of L(3)(û) in the second sub-step of (3.14)
requires iteratively updating the velocity. Now demanding that the third equation in (3.12) delivers a solenoi-
dal velocity field at the end of a complete time step, we derive a Poisson equation for the projection function,
∇̂2φ = (ρ/�t)∇̂ · û∗, i.e.,

1

J 2

(
∂2φ

∂ξ2 + ∂2φ

∂η2

)
= ρ

�t J 2

(
∂(J u∗

ξ )

∂ξ
+ ∂(J u∗

η)

∂η

)
, (3.16)

where �t is the time step and û∗ is the intermediate velocity at the end of the convection-diffusion step. The
solution is found using standard Gauss–Seidel iteration, subject to the periodic condition in ξ and the homogeneous
Neumann boundary conditions at η = 0 and η = ηT .

The periodicity boundary condition is imposed when solving the first sub-step in (3.14), and the no-penetration
boundary condition at the walls is imposed when solving the second sub-step. To ensure the exact satisfaction of
the no-slip condition at the end of the projection step, advancement over each time step is carried out in an iterative
fashion by first introducing a wall slip condition for the intermediate velocity at the η convection-diffusion step.
This intermediate slip value is gradually modified to annihilate theO(�t)wall slip introduced during the projection
step. In practice, only a few iterations are necessary to reduce the numerical slip velocity down to a satisfactorily
low level.

Once the velocity field has been updated over a time step, the interfacial marker points are advanced in the
physical space with the interpolated velocity field using the explicit Euler method. To obtain the interpolated values
of the velocity field at the interfacial nodes, the Cartesian velocity field is calculated, the grid nodes are mapped
to the ξη-plane using the approach described in Sect. 4.1, and the interpolation of the nodal velocity is carried out
using the bicubic B-spline approximation in the ξη-plane (e.g., [14]). The convection-diffusion equation (2.3) is
simultaneously integrated by a finite-volume method [19]. In particular, following the advancement of the interfacial
nodes, the surfactant concentration field is advanced in time using a semi-implicit method, where the geometrical
properties of the interface are evaluated at the beginning of each time step. The typical values �t = 0.005 d/U
and Nξ = Nη = 64 were used in the simulations.

3.3 Code validation

The performance of the numerical method was first assessed by considering pressure-driven flow of a single fluid
in a channel, and comparing the numerical results with those obtained using a pseudospectral method [20]. The
upper wall is flat, and the lower wall is described by the sinusoidal function yw = aw cos(kx), where aw is the
wave amplitude and k = 2π/L is the wave number. In one test case, we set aw/d = 0.15, L/d = π/2, and define
the Reynolds number based on the bulk velocity,

ReUbulk ≡ 3

4

ρ d Ubulk

µ
= 200, Ubulk ≡ 1

Ld

∫ L

0

∫ d

yw

ux dy dx. (3.17)

The factor of 3/4 ensures that the Reynolds number is identical to that based on the centerline velocity in Hagen–
Poiseuille flow. To compare the two simulations, Luo and Bewley’s [20] code was first run with constant Ubulk
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Fig. 2 Pressure-driven flow of a single fluid in a channel with a wavy lower wall. (a) Profiles of the x velocity component reduced
by 3Ubulk. (b) Profiles of the y velocity component reduced by 0.3Ubulk. Profiles in (a) and (b) are plotted at locations x/L =
0, 1/8, 2/8, . . . , 7/8. The present results are shown as solid lines, and the results of Luo and Bewley [20] are shown as dashed lines.
(c) Streamline pattern

until a steady state was reached. A streamwise pressure drop that maintains the steady flow was then imposed in
the present code to obtain the same steady bulk flow rate. Figures 2a, b show steady-state profiles of the Cartesian
velocity components, ux and uy , at x/L = 0, 1/8, 2/8, . . . , 7/8. The results of the present simulation, represented
by the solid lines, are in excellent agreement with those of Luo and Bewley, shown as broken lines. Figure 2 shows
that the ux velocity has a nearly parabolic profile above the crests, and reverses direction inside the troughs. Near the
lower wall, the uy velocity reverses direction between x/L = 1/8 and x/L = 2/8, and then again at x/L � 6/8,
signaling the onset of flow separation. As the fluid enters through x = 0, the uy velocity is positive, showing that the
flow maintains a significant amount of upwards momentum due to inertia. Figure 2c shows the streamline pattern
at steady state, confirming the aforementioned flow recirculation.

As a further application of the numerical method, we investigate the leveling of an interface over a sinusoidal
wall under the action of surface tension in the absence of a mean flow, U = 0 and χ = 0. The initial interfacial
shape and surfactant concentration are described by

y(x, t = 0) = h1 + ε d cos(kx), �(x, t = 0) = �0 [1 + ε� cos(kx + φ�)] , (3.18)

where ε and ε� are dimensionless amplitudes, �0 is the unperturbed surfactant concentration, and φ� is the phase
shift of the surfactant concentration wave with respect to the wall. The initial velocity field is zero in both fluids.
Fig. 3 illustrates the evolution of the interface amplitude, a, plotted against the dimensionless time τ = tγ0/(µ1d)

on a log-linear scale, for L/d = π/2, h1/d = 1/3, λ = 0.2, ε = ε� = 0.1 and φ� = 0. In these graphs, the instan-
taneous amplitude has been reduced by the initial amplitude, a0 ≡ ε d. Results are presented for Reynolds number
Re ≡ ργ d/µ2

1 = 40 and 200, aw/d = 0, 0.15, 0.25, and for both a clean and a surfactant–laden interface. The
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Fig. 3 Leveling of the interface between two otherwise quiescent fluids for several wall amplitudes,L/d = π/2, h1/d = 1/3, λ = 0.2,
and (a) Re ≡ ργ d/µ2

1 = 40, Ma = 0, (b) Re = 200, Ma = 0, (c) Re = 40, Ma = 1, Ds = 0, (d) Re = 200, Ma = 1, Ds = 0. (e, f)
Velocity vector field and instantaneous interfacial shape at τ = 2.5, for L/d = π/2, h1/d = 1/3, λ = 0.2, Re = 200, Ma = 0, and
aw/d = 0 (e), 0.25 (f)

combined action of inertia and capillary effects causes the interface to overshoot and exhibit damped oscillations.
In all cases, increasing the wall amplitude significantly increases the oscillation period and reduces the amplitude
of the oscillation. Comparing the frames on the left- and right-hand side, we find that increasing the Reynolds
number exacerbates the oscillations and delays the leveling of the interface. In the case of large wall amplitude,
aw/d = 0.25, increasing the Reynolds number also significantly reduces the period of the oscillation. Comparing
the upper panels with the lower panels, we find that the surfactant has a significant influence on the dynamics of the
motion, especially at the large wall amplitude. For the case shown in Fig. 3c, the surfactant prevents oscillations and
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allows the interface to monotonically relax to the flat shape. Fig. 3e, f illustrates the instantaneous velocity vector
fields for Re = 200, Ma = 0, and for aw/d = 0 and aw/d = 0.25, at time τ = 2.5. Viscous eddies associated with
the leveling action can be clearly identified.

3.4 Results and discussion

Next, we consider the two-layer channel flow and compare the results of the numerical simulations with the
predictions of the linear perturbation analysis presented in the Appendix for a sinusoidal wall with amplitude
aw/d = 0.025. The numerical simulations were conducted on a 48 × 48 grid with an initial number of 64 inter-
facial marker points, taking the unperturbed unidirectional velocity field as an initial condition. Table 1 shows the
amplitude and phase shift of the interfacial wave and the surfactant concentration wave for shear-driven flow with
L/d = π/2, h1/d = 0.5, ReS ≡ ρUd/µ1 = 20, CaS ≡ µ1U/γ0 = 0.1, Ds = 0, λ = 1 or 2, and Ma = 0 or 1. In
all cases, the amplitude and phase shift of the interface obtained by the numerical simulations are in good agreement
with the predictions of linear analysis. On the other hand, the numerical simulations somewhat overestimate the
amplitude of the surfactant concentration wave, while faithfully reproducing the values for the phase shift.

Figure 4 shows steady interfacial profiles for L/d = π/2, h1/d = 0.15, ReS = 100, CaS = 1, and Ma = 0, and
a sequence of increasing wall amplitudes, aw/d = 0.025, 0.075, and 0.125. As expected, the difference between the
numerical simulations and the linear analysis represented by the dashed lines is more pronounced for the highest
wall amplitudes, aw/d = 0.125. In all cases, the linear analysis underestimates the amplitude of the interface. Note
that, in the case of Stokes flow, the linear analysis overestimates the amplitude of the interface [8]. Moreover, the
theoretical prediction underestimates the phase shift of the interface when λ = 1 and overestimates it when λ = 0.2.

Figure 5 shows steady interfacial profiles forL/d = π/2,h1/d = 1/3,λ = 1.0, CaS = 4, Ma = 0, aw/d = 0.15,
and several Reynolds numbers. The Stokes flow profile shown as a broken line was calculated using the boundary-
element method of Luo and Pozrikidis [8]. The profile for ReS = 4 closely resembles that for Stokes flow, whereas
the profile for ReS = 20 is slightly shifted downstream. As the Reynolds number is raised, the interface amplitude
is reduced, the interfacial profile becomes more steep, and the valleys are shifted downstream.

Figure 6 illustrates the evolution of the interface for ReS = 4 and ReS = 240 from the initial flat configuration
to a nearly steady state. In both cases, the interface quickly evolves into a traveling wave. For ReS = 4, a valley
first develops above the descending part of the wall. As the interfacial wave is convected toward the ascending part
of the wall, the trough is lifted upwards and then disappears as it reaches the wall crest. Eventually, the interface
settles to a nearly sinusoidal shape. When ReS = 240, the wave steepens as it travels over a furrow in the wall, and
it is smoothed as the wall starts to ascend. At later times, the amplitude of the interface is noticeably diminished.
The weakened wave is unable to surmount a protrusion in the wall and, ultimately, it settles into the steady state

Table 1 Amplitude and phase-shift of the interfacial and the surfactant concentration waves for shear-driven flow with L/d = π/2,
h1/d = 0.5, ReS = 20, CaS = 0.1, and Ds = 0

Interfacial wave Surfactant concentration wave

Amplitude Phase shift Amplitude Phase shift
|A| arg(A) |�1/�0| arg(�1)

λ = 1, Ma = 0 Linear theory 0.057492 0.435173π – –
Simulation 0.0594 0.4275π – –

λ = 1, Ma = 1 Linear theory 0.053505 0.402724π 0.044823 −0.481782π
Simulation 0.0539 0.3957π 0.0526 −0.4711π

λ = 2, Ma = 0 Linear theory 0.071055 0.309061π – –
Simulation 0.0757 0.2875π – –

λ = 2, Ma = 1 Linear theory 0.062859 0.298538π 0.069378 −0.549089π
Simulation 0.0668 0.2875π 0.0847 −0.5602π

123



Two-layer flow in a corrugated channel 137

(a) (b)

0 1 2 3 4 5 6
0.15

0.2

0.25

0.3

0.35

0.4

0.45

x/h

y/
h

0 1 2 3 4 5 6
0.15

0.2

0.25

0.3

0.35

0.4

0.45

x/h

y/
h

Fig. 4 Steady interfacial profiles for shear-driven flow over a sinusoidal wall with L/d = π/2, h1/d = 0.15, λ = 0.2, ReS = 100,
CaS = 1, Ma = 0, wall amplitude aw/d = 0.025, 0.075, and 0.125, and (a) λ = 1, (b) λ = 0.2. The predictions of linear theory are
shown as dashed lines
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Fig. 5 Steady interfacial profiles for shear-driven flow over a sinusoidal wall with L/d = π/2, h1/d = 1/3, λ = 1.0, CaS = 4,
Ma = 0, and aw/d = 0.15. The dashed line represents results for Stokes flow computed using a boundary-element method. For clarity,
the profiles for different Reynolds numbers have been shifted in the y direction such that the mean locations (shown as dotted lines) are
separated by the distance 0.1h

shown in Fig. 5. Introducing surfactant delays the approach to the steady state, but does not significantly alter the
ultimate profile attained.

Increasing either the Reynolds number or the wall amplitude much beyond the values shown in Fig. 5 leads
to flow instability. In Fig. 7, we illustrate the evolution for ReS = 100, but with the wall amplitude increased to
aw/d = 0.25. The streamline patterns and interfacial profiles are shown as a sequence of instantaneous snapshots.
The simulation is initiated at τ = 0 with a flat interface. In this case, eddies formed within the wall furrows shift
and deform slightly as the motion progresses, and the interface rapidly develops a sharp, localized front, which
begins to overturn. The overturning is accelerated when the wave passes over a crest on the wall. As the wave
contorts, the interfacial profile suggests that droplets are formed and begin to pinch off. The numerical method
finally breaks down when the curvature of the interface becomes large enough. We have confirmed that increasing
the grid resolution and reducing the time step do not make a significant difference to the results. Increasing the
surface tension suppresses the instability and enables the flow to reach a steady state. This is demonstrated in Fig. 8
for the same parameter values as before, but with the lower capillary number CaS = 1. The interface starts from
a flat profile and reaches a steady state at about τ = 15. The figure displays the steady state interface shape and
streamlines of the flow at time τ = 25.

As a final topic, we consider shear-driven flow over a wall comprised of a periodic sequence of semi-circular
protrusions. An example is shown in Fig. 9 for L/d = π/2, λ = 1, CaS = 1, ReS = 100, and Ma = 0, and
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Fig. 6 Evolution of the interface for (a) ReS = 4 and (b) ReS = 240 from τ = 0 (flat lines) to τ = 6.125, with equal time intervals in
between. The wall profile is shown as a thick line and with a reduced amplitude

for semi-circular protrusions of radius L/4. To accurately reflect the wall geometry in the conformal mapping,
we take Nb = 100, Np = 400 in computing the coefficients bn in the coordinate transformation (3.2). Figure 9a
displays interface profile and streamlines at steady state for h1/d = 0.45, where the film thickness, h1, is measured
from the flat part of the wall to the mean location of the interface. Large eddies are apparent between adjacent
protrusions. Figure 9b shows steady interfacial profiles for both h1/d = 0.45 and h1/d = 0.5. The solid lines
represent the present results for ReS = 100, and the broken lines represent the results for Stokes flow computed
by Luo and Pozrikidis [8]. Comparing the two sets of results, we find that inertia reduces the magnitude of the
interfacial deformation and stretches the downstream side of the interface profile.

4 Discussion

We have studied the effect of inertia on two-layer flow over a corrugated wall when the interface between the fluids
is contaminated with an insoluble surfactant.

In the Appendix, we used a perturbation approach to calculate the interfacial deformation when the amplitude
of the wall undulations is small, and derived a linearized disturbance equation and boundary conditions for the
perturbed flow valid at arbitrary Reynolds number. These were solved numerically using a Chebyshev tau method.
The amplitude of the interfacial deformation and phase shift with respect to the wall was computed for a broad
range of parameter values.

The Stokes flow calculations performed by Luo and Pozrikidis [8] demonstrated that the effect of the surfactant
depends on the viscosity ratio, the distance of the interface from the lower wall, the capillary number, and the
wave length of the corrugations. When the interface is close to the lower wall, surfactant increases the deformation
experienced by the interface and induces a positive phase shift. As the interface approaches the upper wall, the
phase shift vanishes. At non-zero Reynolds number, the phase shift does not tend to zero as the thickness of the
lower layer is increased. For pressure-driven flow in particular, the phase shift varies rapidly as the upper wall is
approached. For intermediate lower layer thicknesses, inertia has a strong influence on the phase shift, and may
cause it to switch sign.

Irrespective of the lower layer thickness, raising the Reynolds number has little effect on the amplitude of the
interfacial wave when the wave length of the wall corrugations is comparable to the channel width. The effect of
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Fig. 7 Instantaneous streamline pattern and shape of the interface (shown as marked lines) for L/d = π/2, h1/d = 1/3, λ = 1,
CaS = 4, ReS = 100, Ma = 0, aw/d = 0.25 at times (a) τ = 0.625, (b) τ = 1.25, (c) τ = 1.875, (d) τ = 2.5, (e) τ = 3.125, and
(f) τ = 3.75

inertia is more pronounced when the wave length of the corrugations is increased. In the context of shear-driven flow
over a thin film coating a rough wall, we have found that increasing the Reynolds number reduces the interfacial
disturbance for long-wave wall corrugations. For short-wave corrugations, the interfacial deformation is only slight,
but is heightened by an increase in inertia. For either pressure-driven or shear-driven flow, elevating the surfactant
concentration exaggerates the interfacial deformation up to an asymptotic limit. Similarly, raising the viscosity
contrast between the layers leads to a larger interface amplitude. As the viscosity ratio is increased, the amplitude
of the interface again approaches an asymptotic limit. Within the asymptotic regime, raising the Reynolds number
for pressure-driven flow amplifies the interface deformation. The reverse picture applies for shear-driven flow when
an increase in inertia leads to a decrease in the interfacial deformation.
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Fig. 8 The streamline
pattern and steady
interfacial profile (marked
line) at time τ = 25 for
shear-driven flow with
conditions L/d = π/2,
h1/d = 1/3, λ = 1,
CaS = 1, ReS = 100,
Ma = 0, and aw/d = 0.25
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Fig. 9 Shear-driven flow over a corrugated wall with semi-circular protrusions of radius L/4 for L/d = π/2, λ = 1, CaS = 1,
ReS = 100, Ma = 0. (a) The wall and interface (marked line) for h1/d = 0.45. (b) The interfaces for h1/d = 0.45 (lower solid line)
and h1/d = 0.5 (upper solid line). Corresponding results for Stokes flow are shown as dashed lines in (b)

An immersed interface method was used to carry out numerical simulations of two-layer flow at arbitrary
Reynolds number. The results were validated by successful comparison first with the simulations for homogeneous
fluid flow performed by Luo and Bewley [20], and second with the predictions of the linearized analysis. In the
absence of a mean flow, a deformed interface settles under the influence of capillary forces to a flat resting config-
uration, while executing standing-wave oscillations whose period is an increasing function of the wall amplitude.
Introducing surfactant may completely eliminate the oscillations, allowing the interface to relax monotonically to
the flat resting state.

For shear-driven flow over a viscous film, we found that, when the wall corrugations are large, a clean interface
attains a steady state profile whose phase shift with respect to the wall increases with Reynolds number. At the same
time, the interfacial amplitude decreases as the Reynolds number is raised. Moreover, the steady interface tends
to deviate from the sinusoidal shape found at lower Reynolds numbers. The character of the flow on the approach
to the steady state changes markedly with the Reynolds number. In particular, wave steepening in the early stages
of the flow development becomes more severe as the Reynolds number increases. At higher Reynolds number, or
when the amplitude of the wall corrugations is sufficiently large, interfacial instability sets in. The interface develops
localized contortions which become intensified every time the wave passes over a crest in the wall. Ultimately, the
wave profiles overturn and begin to pinch together releasing droplets of the lower fluid.

Finally, we have described shear-driven flow over a sequence of semi-circular protrusions of arbitrary ampli-
tude. As expected, large eddies develop between the protrusions. Inertia reduces the amplitude of the interfacial
deformation and elongates the downstream side of the interfacial wave.

This study has concentrated on steady state solutions. We have found that surfactant promotes interfacial defor-
mation, while inertia may ameliorate or exaggerate it, depending on parameter values. By following the evolution
of a flat interface from an initial condition, the numerical simulations provide evidence that the steady solutions we
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have computed are stable. We have also presented an example where the flow becomes unstable and the interface
overturns. A complete study of the interfacial stability remains a subject for future investigation.
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the Nuffield Foundation under grant NUF-NAL-04.

Appendix A: Small sinusoidal undulations

In this appendix, we discuss steady interfacial shapes established when the amplitude of the lower wall is small
compared to the channel width. To carry out this analysis, it is convenient to shift the x-axis so that the undisturbed
interface for unidirectional flow through a channel with two plane walls is located at y = 0. The streamwise velocity
profile of this base flow is given by

u
(0)
j = − χ

2µj
y2 + ξj y + uI , v

(0)
j = 0, (A.1)

for j = 1, 2. The interfacial velocity, uI , is given by

uI = λ

λ+ r
U + h2χ

µ1

2r

(1 + r)(λ+ r)
, (A.2)

where h = (h1 +h2)/2 is the semi-channel width and h1, h2 are the undisturbed thicknesses of the two layers. The
interfacial shear rates appearing in (A.1) are given by

ξ1 = U

h1

λ

λ+ r
− hχ

µ1

λ− r2

(1 + r)(λ+ r)
, (A.3)

and ξ2 = ξ1/λ. The corresponding pressure field is given by

p
(0)
j (x, y) = −χ x + P0, (A.4)

where P0 is an inconsequential constant.

A.1 Linear perturbation analysis

In the presence of small undulations, the lower wall profile is described by the real part of

yw(x) = −h1 + εh1 eikx, (A.5)

where k = 2π/L is the wave number and ε is a small dimensionless parameter. Correspondingly, the interface is
described by

yI (x) = εη(x) = εh1Aeikx, (A.6)

where A is a complex constant. The perturbation of the surfactant concentration and surface tension are described
by the analogous expansions,

�(x) = �0 + ε�1 eikx, γ (x) = γ0 + εγ1 eikx, (A.7)

where γ0 and �0 are the undisturbed values, and γ1, �1 are dimensional complex constants to be determined as part
of the solution. Substituting (A.7) in the equation of state (2.4), we obtain

γ1 = −Ma
γ0

�0
�1, (A.8)

where the Marangoni number Ma was defined in (2.5). The perturbation velocity, stream function, ψ , and pressure
are written as

(uj , vj , ψj , pj ) =
(
u
(0)
j , v

(0)
j , ψ

(0)
j , p

(0)
j

)
+ ε

(
u
(1)
j , v

(1)
j , ψ

(1)
j , p

(1)
j

)
(A.9)
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for j = 1, 2, where the stream function is defined by uj = ∂ψj/∂y, vj = −∂ψj/∂x. Substituting these expressions

in the Navier–Stokes equation, eliminating the pressure, and writing ψ(1)j (x, y) = φj (y) eikx , we obtain the
disturbance equation

φ
′′′′
j − 2k2φ′′

j + k4φj = ρik

µj

[
u
(0)
j (φ

′′
j − k2φj )− d2u

(0)
j

dy2 φj

]
, (A.10)

where a prime denotes a derivative with respect to y.
At the lower wavy wall, the no-penetration and no-slip conditions require

φ1 = 0, φ′
1 = −aw h1 s (A.11)

at y = −h1, where the lower-wall shear rate, s, is given by

s = du(0)1

dy

∣∣∣
y=−h1

= χ

µ1
h1 + ξ1. (A.12)

Similar conditions apply at the upper wall,

φ2 = φ′
2 = 0 (A.13)

at y = h2. Continuity of velocity at the interface requires

φ1 = φ2, φ′
1 − φ′

2 = A

λ
(1 − λ)ξ1 (A.14)

at y = 0. The tangential component of the dynamic stress condition (2.2) requires[
µj (φ

′′
j + k2φj +mjA)

]1

2
= ikγ0

uI − ikDs
Ma (φ′

1 + Aξ1), (A.15)

at y = 0, where mj = d2u
(0)
j /dy

2 = −χ/µj , and the normal component requires
[
2µjk

2φ′
j − µj (φ

′′′
j − k2φ′

j )
]1

2
= −ik3γ0A. (A.16)

In both cases, the notation [•]1
2 denotes the jump [•]1 − [•]2. Note that the right-hand side of (A.15) has been

derived by eliminating γ1 using (A.8) and the linearized form of the surfactant transport equation (2.3). The
latter yields the relation (φ′

1 + Aξ1) �0 = (ikDs − uI ) �1 at y = 0 (e.g., [21]). Kinematic compatibility requires
D[y − εη(x)]/Dt = 0 evaluated at the interface, where D/Dt is the material derivative, yielding

φ1 = −uIA, (A.17)

at y = 0. The task now is to solve (A.10) subject to conditions (A.11)–(A.17).
The solution was found numerically using a Chebyshev tau method (e.g., [22,23]). To implement the method,

each fluid region is mapped onto the canonical domain of definition for Chebyshev functions using the two new
coordinates

y1 = 2

h1

(
y + h1

2

)
in fluid 1, y2 = 2

h2

(
y − h2

2

)
in fluid 2 (A.18)

so that both y1 and y2 are defined over the interval [−1, 1]. Next, the functions φj , for j = 1, 2, are expanded in a
truncated series of Chebyshev polynomials, Tk(yj ), by setting

φj (yj ) =
Nj∑
k=0

ajk Tk(yj ), (A.19)

where ajk are a priori unknown constant coefficients, and N1, N2 are specified levels of truncation for each layer.
Substituting (A.19) in (A.10) for j = 1, 2, and projecting the resulting equations onto Tm(yj ) form = 0, . . . , Nj−4
under the Chebyshev inner product,

〈Tm(x), f (x)〉 =
∫ 1

−1

1√
1 − x2

Tm(x)f (x) dx, (A.20)
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Fig. 10 Shear-driven Stokes flow in a channel with L/d = 1, λ = 0.2, CaS = 2.0, Ma = 1.0, Ds = 0. Magnitude (solid line) and
phase shift (broken line) of (a) the interfacial amplitude A, and (b) perturbation in the surfactant concentration, �1/�0. In both cases,
results computed using the Chebyshev tau method are shown as circles for the magnitude, and as squares for the phase shift

we derive a total of N1 + N2 − 6 algebraic equations. All integrals involving Chebyshev polynomials and their
derivatives in the projection may be computed exactly using known identities and recursive relations (e.g., [22, pp.
159–161]. To complete the numerical problem, a set of eight more equations are derived by substituting (A.19) in
the boundary conditions (A.11)–(A.17), yielding a complete set of N1 + N2 + 2 equations for the N1 + N2 + 2
coefficients ajk , assembled in the linear system

A · X = b, (A.21)

where X = (a10, . . . , a1N1 , a20, . . . , a2N2 , A)
T . The solution is found by Gauss elimination. In practice,

N1 = N2 = 15 is sufficient to produce accurate results for a wide range of parameter values. Results will be
presented using these truncation levels, unless otherwise stated.

To test the numerical method, we set the right hand side of (A.10) equal to zero to obtain Stokes flow, and
compare the results with those derived by Luo and Pozrikidis [8] using an analytical method. The amplitude and
phase shift of the interfacial deformation and surfactant perturbation for shear-driven flow with λ = 0.2, CaS = 2,
L/d = 1, Ma = 1 and Ds = 0 are shown in Fig. 10. The results of Luo and Pozrikidis [8] appear as solid and
broken lines, and those computed using the Chebyshev tau method are shown as circles and squares. The excellent
agreement validates the numerical method in the limit of Stokes flow.

A.2 Results and discussion

Figure 11a illustrates the effect of inertia on the interfacial amplitude for shear-driven flow with L/d = 1, λ = 0.2,
CaS = 1.0, Ma = 1.0, Ds = 0, and Reynolds numbers ReS in the range 0–100. Both CaS and ReS are defined
using the channel width as a length scale, L = d. The results show that the interface amplitude, |A|, varies only
weakly with the Reynolds number. When h1/L is less than about 0.3, increasing the Reynolds number raises the
interfacial amplitude; when h1/L is larger than about 0.4, increasing the Reynolds number lowers the interfacial
amplitude; a mixed behavior is observed for intermediate layer thicknesses. Figure 11b reveals that the fluid inertia
has a strong influence on the interfacial phase shift, except for very thin lower layers. At sufficiently large Reynolds
numbers, there is a value h1/d where the phase shift is zero, which means that the interface is in phase with the lower
wall. Luo and Pozrikidis [8] observed that, as the interface approaches the upper wall, h1/d → 1, the interfacial
wave tends to become in-phase with the lower wall in Stokes flow. At non-zero Reynolds numbers, the phase shift
remains finite in this limit. Figure 11c, d shows the effect of inertia on the amplitude and phase shift of the surfactant
concentration wave. Figure 11c shows that inertia has only a minor effect on the amplitude of the concentration
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Fig. 11 Effect of the Reynolds number on (a) the interfacial amplitude, (b) the interfacial phase shift, (c) the surfactant amplitude,
and (d) the surfactant phase shift, for shear-driven flow with L/d = 1, λ = 0.2, CaS = 1.0, Ma = 1.0, Ds = 0. The different curves
correspond to Reynolds numbers that are evenly spaced from 0 (solid line) to 100 (broken line)

wave for thin lower-wall layers, and a pronounced effect for thicker layers. For smaller layer thicknesses, h1/L,
raising the Reynolds number increases the amplitude of the concentration wave, whereas, for large layer thicknesses,
raising the Reynolds number decreases the amplitude of the surfactant concentration wave. For intermediate layer
thicknesses, an increase or decrease may occur. A similar reversal in the role of the Reynolds number is experienced
by the phase shift, as illustrated in Fig. 11d.

Results for pressure-driven flow are shown in Fig. 12 for L/d = 1, λ = 0.2, CaP = 1.0, Ma = 1.0, and
Reynolds numbers, ReP , in the range 0–100. Both CaP and ReP are based on the length scale L = d. As in the case
of shear-driven flow, inertia has only a mild influence on the amplitude of the interface, |A|. However, in the case
of pressure-driven flow, inertia has a significant influence on the interfacial phase shift even for thin lower layers.
Moreover, as the interface approaches the upper wall, the interfacial phase shift changes rapidly and does not tend
to zero, even for Stokes flow. As in the case of shear-driven flow, the effect of inertia on the amplitude and phase
shift of the surfactant perturbation depends on the location of the unperturbed interface. For small values of h1/L,
raising the Reynolds number produces an increase in the perturbation amplitude. Conversely, for larger values of
h1/L, raising the Reynolds number reduces the amplitude of the surfactant perturbation.

The effect of the wave number of the wall corrugations, kh1, is shown in Fig. 13 for h1/d = 0.1, λ = 0.2,
Ma = 1.0, and Ds = 0. To isolate the effect of the wave length, the capillary and Reynolds numbers are now
based on the lower layer thickness scale L = h1. In these computations, the Chebyshev truncation levels were set
at the increased level N1 = N2 = 30. Fig. 13a illustrates the effect of kh1, on the interfacial amplitude, |A|, for
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Fig. 12 Effect of Reynolds number on (a) the interfacial amplitude, (b) the interfacial phase shift, (c) the surfactant amplitude, and
(d) the surfactant phase shift, for pressure-driven flow with L/d = 1, λ = 0.2, CaP = 1.0, Ma = 1.0, Ds = 0. The different curves
correspond to Reynolds numbers that are evenly spaced from 0 (solid line) to 100 (broken line)

pressure-driven flow with CaP = 0.01 and Reynolds numbers, ReP , ranging from 0 to 1. The graphs show that,
as the wave number kh1 is raised, the perturbation amplitude decreases in a monotonic fashion. At high values of
kh1, the graphs for different Reynolds number intertwine. A similar behavior is observed for shear-driven flow, as
illustrated in Fig. 13b for CaS = 1.0. When kh1 is small, raising the Reynolds number reduces the interfacial ampli-
tude. On the other hand, for values of kh1 above about 1.11, raising the Reynolds number promotes the interfacial
deformation.

Figure 14 illustrates the effect of the Marangoni number for kh1 = π/5 ≈ 0.63, h1/d = 0.1, λ = 0.2, and
Ds = 0. The capillary and Reynolds numbers are based on the channel width, L = d. In these calculations, the
Chebyshev truncation levels were fixed at N1 = N2 = 30. Fig. 14a shows results for pressure-driven flow with
CaP = 1.0, and Fig. 14b shows results for shear-driven flow with CaS = 1.0. For either pressure-driven or shear-
driven flow, raising the Marangoni number increases the interfacial amplitude. Consequently, the surfactant has a
stronger effect on the deformation of the interface.

Figure 15 shows the effect of the viscosity ratio λ for L/d = 1, h1/L = 0.2, Ma = 1.0, and Ds = 0. The
capillary and Reynolds numbers are based on the channel width scale L = d. Fig. 15a shows graphs of |A| against λ
for pressure-driven flow when CaP = 1.0, and Fig. 15b shows results for shear-driven flow when CaS = 1.0. In both
cases, each curve corresponds to a different Reynolds number ranging from 0 to 50. As the viscosity ratio is raised
from zero, the interface amplitude quickly rises before gradually decaying to an asymptotic limit corresponding
to a very viscous upper fluid. Interestingly, in the case of pressure-driven flow, the curve for ReP = 0 rises with
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Fig. 13 Variation of the interface deformation amplitude, |A|, with the wave number, kh1, for h1/d = 0.1, λ = 0.2, Ma = 1.0 and
Ds = 0. (a) Pressure-driven flow for CaP = 0.01 and ReP = 0 (solid line) up to ReP = 1 (broken line) with equal intervals in between
(dotted lines). (b) Shear-driven flow for CaS = 1.0 and ReS = 0 (solid line) up to ReS = 100 (broken line) with equal intervals in
between (dotted lines)

(a) (b)

0 0.25 0.5 0.75 1 1.25 1.5
Ma

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

|A
|

0 0.2 0.4 0.6 0.8 1
Ma

0.25

0.3

0.35

0.4

0.45

0.5

0.55

|A
|

Fig. 14 Effect of the Marangoni number of the interface amplitude for kh1 = π/5 ≈ 0.63, h1/d = 0.1, λ = 0.2, and Ds = 0.
(a) Pressure-driven flow with CaP = 1.0 and various ReP , and (b) shear-driven flow with CaS = 1.0 and various ReS . In both cases,
the Reynolds number varies from 0 (solid line) to 100 (broken line) with equal intervals in between (dotted lines)
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Fig. 15 Effect of the viscosity ratio on the interface amplitude for L/d = 1, h1/L = 0.2, Ma = 1.0 and Ds = 0. (a) Pressure-driven
flow for CaP = 1.0 and ReP = 0 (solid line) up to ReP = 50 (broken line) with equal intervals in between (dotted lines). (b)
Shear-driven flow for CaS = 1.0 and ReS = 0 (solid line) up to ReS = 50 (broken line) with equal intervals in between (dotted lines)

the highest initial slope. When the viscosity ratio is high, inertia tends to increase the interfacial deformation. The
situation is reversed for shear-driven flow where the Stokes flow curve exhibits the most gentle growth. For large
viscosity ratios, increasing the Reynolds number reduces the amplitude of the interface.
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